Problem EX-2 (5 parts)

MIPS Assembly Language

Part A: Write a MIPS program fragment that computes “$-17 \cdot (B - C)$” and puts the result in register 6. Assume B and C are in registers 1 and 2, respectively. Use a minimum number of instructions and registers. You may reuse registers 1 and 2.

Part B: Suppose A is stored in memory location 1020 and B is stored in memory location 1024. Write a MIPS program fragment that computes “$256 \cdot (A + B/16)$” and stores the result at memory location 1028. Use a minimum number of instructions and registers.

Part C: Write a MIPS program fragment to jump to address $0xABCD1234$.

Part D: Suppose an image processing system stores a 512×256 pixel image in memory. Each pixel is represented by 8 bits and they are stored contiguously in memory. How much memory (in kilobytes) does this require? How many bits are needed to address 1 pixel?

Part E: Write a MIPS fragment that exchanges two registers (1 and 2) without using any other registers or memory. (hint: think xor).