Problem EX-2 (5 parts)

MIPS Assembly Language

Part A: Write a MIPS program fragment that computes \(-17 \cdot (B - C)\) and puts the result in register 6. Assume B and C are in registers 1 and 2, respectively. Use a minimum number of instructions and registers. You may reuse registers 1 and 2.

```mips
sub $1, $1, $2  # B = B - C
addi $6, $0, -17  # $6 = -17
mult $1, $6    # Lo = -17 \cdot (B - C)
mflo $6        # $6 = result
```

Part B: Suppose A is stored in memory location 1020 and B is stored in memory location 1024. Write a MIPS program fragment that computes \(256 \cdot (A + B/16)\) and stores the result at memory location 1028. Use a minimum number of instructions and registers.

```mips
lw  $1, 1020($0)  # $1 = mem[1020]
lw  $2, 1024($0)  # $2 = mem[1024]
sra $2, $2, 4  # $2 = $2 / 16
add $2, $2, $1  # $2 = A + B/16
sll $2, $2, 8  # $2 = 256 \cdot (A + B/16)
sw  $2, 1028($0)  # mem[1028] = $2
```

Part C: Write a MIPS program fragment to jump to address 0xABCD1234.

```mips
lui  $1, 0xABCD  # load upper word
ori $1, $1, 0x1234  # combine with lower word
jr  $1  # jump to 0xABCD1234
```

note: since MISASIM does not support hexadecimal value specification, a decimal equivalent would have to be specified.

Part D: Suppose an image processing system stores a 512x256 pixel image in memory. Each pixel is represented by 8 bits and they are store contiguously in memory. How much memory (in kilobytes) does this require? How many bits are needed to address 1 pixel?

- \(512 \times 256 \text{ pixels} \times 1 \text{ byte/pixel} = 2^9 \times 2^8 = 2^{17} = 128 \text{ Kbytes}\)
- To address 128 Kbytes, an address would require at least 17 bits.

Part E: Write a MIPS fragment that exchanges two registers (1 and 2) without using any other registers or memory. (hint: think xor).

```mips
xor $1, $1, $2  # $1 = $1 \oplus $2
xor $2, $1, $2  # $2 = $1 \oplus $2 \oplus $2 = $1
xor $1, $1, $2  # $1 = $1 \oplus $2 \oplus $1 = $2
```